GOVT. M.H.COLLEGE OF HOME Sc. & SCIENCE FOR WOMEN AUTONOMOUS

JABALPUR (M.P.)

Code No.: OBS/201/M/21

M.Sc. II SEMESTER MAIN EXAMINATION JULY - 2021

Subject: Mathematics

Paper - I Advanced Abstract Algebra - II

> Max. Marks: 35 Min. Marks: 12

Note: Attempt all questions. All questions carry equal marks. Symbols have their usual meanings.

UNIT-I

Q.1. Let K be a normal extension of F and let H be a subgroup of G(K, F): let

7

 $K_H = \{x \in K : \sigma(x) = x \text{ for all } \sigma \in H\}$

be the fixed field of H. Then prove that

1. $[K:K_H] = 0 (H)$

2. $H = G(K, K_H)$

In particular, when H = G(K, F)

$$[K : F] = 0 (G (K, F))$$

UNIT-II

Q.2. State and prove fundamental theorem of R-homomorphism.

7

UNIT-III

Q.3. Let $M = \Sigma_{\alpha \in \wedge} M_{\alpha}$ be a sum of simple R-submodules M_{α} . Let K be a submodule of M. Then prove that there exists a subset $_{\wedge}$ ' of $_{\wedge}$ such that $X = \Sigma_{\alpha \in \wedge} M_{\alpha}$ is a direct sum and $M = K \oplus \left(\oplus \Sigma_{\alpha \in \wedge} M_{\alpha} \right)$

UNIT - IV

Q.4. State and prove Hilbert basis theorem.

UNIT-V

Q.5. Find the abelian group generated by (x_1, x_2, x_3) subject to

$$5x_1 + 9x_2 + 5x_3 = 0$$
$$2x_1 + 4x_2 + 2x_3 = 0$$
$$x_1 + x_2 - 3x_3 = 0$$

. . .

GOVT. M.H.COLLEGE OF HOME Sc. & SCIENCE FOR WOMEN AUTONOMOUS JABALPUR (M.P.)

Code No.: OBS/202/M/21

M.Sc. II SEMESTER MAIN EXAMINATION JULY - 2021

Subject: Mathematics

Paper - II

Advanced Discrete Mathematics

Max. Marks: 35 Min. Marks: 12

Note: A	Attempt all questions. All questions carry equal marks. Symbols have their usual 1	neanings.
	UNIT - I	
Q.1.	Prove that every finite semigroup has an idempotent element.	7
	UNIT - I I	
Q.2.	Show that dual of a lattice is a lattice.	7
	UNIT - III	
Q.3.	Explain direct product of lattice. Prove that direct product of lattice is a lattice.	7
	UNIT - IV	
Q.4.	Explain with examples -	7
	(a) (i) walk (ii) path (iii) circuit.	
	(b) Prove that number of odd vertices in a graph is always even.	
	UNIT - V	
Q.5.	(a) Define tree & explain its properties.	31/2
	(b) Prove that tree T with n vertices has n-1 edges.	31/2

 \bullet

GOVT. M.H.COLLEGE OF HOME Sc. & SCIENCE FOR WOMEN AUTONOMOUS JABALPUR (M.P.)

Code No.: OBS/203/M/21

M.Sc. II SEMESTER MAIN EXAMINATION JULY - 2021

Subject : Mathematics

Paper - III Complex Analysis - II

> Max. Marks: 35 Min. Marks: 12

Note: Attempt all questions. All questions carry equal marks. Symbols have their usual meanings.

UNIT-I

Q.1. State and prove Weierstrass factorization theorem.

7

UNIT-II

Q.2. State and prove Schwartz reflection principle.

7

UNIT-III

Q.3. Let (f, θ) be a function element and let G be a region containing D such that (f, θ) admits unrestricted continuation in G. Let $a \in D$, $b \in G$ and Let Y_o and Y_1 , be paths in G from a to b, Let $\{(f_t, D_t) : 0 \le t \le 1\}$ and $\{(g_t, D_t) : 0 \le t \le 1\}$ be analytic continuation of (f, D) along Y_o and Y_1 respectively. If Y_o and Y_o are fixed-end-point homotopic in G then prove that $[f_1]_{-b} = [g_1]_b$

UNIT-IV

Q.4. State and prove Poision-Jenson Formula.

UNIT-I

Q.5. Let f be an analytic function in a region containing the closure of the disc $D = \{Z : |Z| < 1\}$ and satisfying f(0) = 0, f'(0) = 1. Then there is a disc $S \subset D$ in which f is one-one and such that f(S) contains a disc of radius 1/72.

. . .

GOVT. M.H.COLLEGE OF HOME Sc. & SCIENCE FOR WOMEN AUTONOMOUS JABALPUR (M.P.)

Code No.: OBS/204/M/21

M.Sc. II SEMESTER MAIN EXAMINATION JULY - 2021

Subject: Mathematics

Paper - IV

Lebesgue Measure & Integration

Max. Marks: 35

Min. Marks: 12

Note: Attempt all questions. All questions carry equal marks. Symbols have their usual meanings.

UNIT-I

Q.1.(a) Prove that the outer measure of an interval equals its length. $3\frac{1}{2}$ (b) Prove that the class M is a σ - algebra. $3\frac{1}{2}$

UNIT-II

Q.2. (a) State & prove the lebesgue monotone convergence theorem. $3\frac{1}{2}$

(b) Show that $\int_0^1 \frac{x^{1/3}}{1-x} \log \frac{1}{x} dx = \mathbf{q} \sum_{n=1}^{\infty} \frac{1}{(3n+1)^2}$

UNIT-III

Q.3. (a) If $f \in BV$ [a, b] then show that $f(b) - f(a) = P - N \& T = P + N \mu$ variations being on the finite interval [a, b]

(b) Prove that $f \in BV[a, b]$, where a & b are finite if and only if the graph of f is rectifiable.

UNIT-IV

Q.4. (a) Let ψ be strictly convex then show that $\psi(\int d\mu) = \int (\psi_0 f) d\mu$ if and only if $f = \int f d\mu$ a.e.

(b) Prove that every function convex on an open interval is continuous.

UNIT-V

Q.5. (a) If a sequence of measurable functions converges in measure, then prove that the limit function is unique a.e.

(b) If $\{fn\}$ is a sequence of measurable function which is fundamental in measure then prove that there exists a measurable function f such that $fn \to f$ in measure. $3\frac{1}{2}$

• • •

GOVT. M.H.College of Home Sc. & Science for Women Autonomous Jabalpur (M.P.)

Code No.: OBS/205/M/21

M.Sc. II SEMESTER MAIN EXAMINATION JULY - 2021

Subject: Mathematics

Paper - V

Ordinary & Partial Differential Equations

Max. Marks: 35

Min. Marks: 12

Note: Attempt all questions. All questions carry equal marks. Symbols have their usual meanings.

UNIT-I

- Q.1.(a) Prove that the eigen functions of a strum Liouville problem form an orthogonal set. (b) Solve $x^2y'' 2(x^2 + x)y' + (x^2 + 2x + 2)y = 0$ by reducing it to normal form. $3\frac{1}{2}$ UNIT II
- Q.2. (a) Solve the equation $z(x + 2y) p z(y + 2x)q = y^2 x^2$ (b) Slove by Chrpit's method the equation $x z q^2 = p$ $3\frac{1}{2}$

UNIT - III

- Q.3. (a) Find solution of $y = (1 + x)^p$ by method of power series. $3\frac{1}{2}$
 - (b) Solve the Legendre's equation by method of power series. $3\frac{1}{2}$

UNIT-IV

- Q.4. (a) Find L(\sin^2 ax) without integrating.
 - (b) Find the function whose Laplace transorm is $\frac{1}{p^4 + p^2}$ 3½

UNIT-V

- Q.5. (a) Find $L^{-1}\left[\frac{1}{\left(p^2+a^2\right)^2}\right]$ by convolution.
 - (b) Solve the integral equation $y(x) = x^3 + \int_0^x \sin(x t) y(t) dt$

• • •